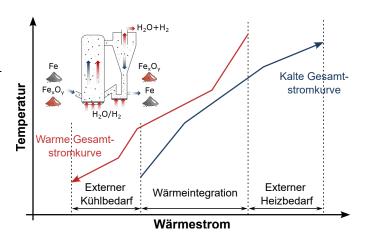
Modellierung und Bewertung alternativer Wärmeintegrations-konzepte für die eisenbasierte Wasserstoffspeicherung

Masterthesis/Bachelorthesis Institut für Technische Thermodynamik 28. März 2025


Motivation

Im Rahmen des Forschungsprojekts Clean Circles wird das Potenzial von Eisen als nachhaltiger Energieträger untersucht. Dabei kann Eisen zur Speicherung von Wasserstoff genutzt werden: Erneuerbare Energie kann durch die thermochemische Reduktion von Eisenoxiden mithilfe von Wasserstoff gespeichert und bei Bedarf durch die Oxidation von Eisen mit Wasserdampf wieder freigesetzt werden. Durch diesen zyklischen Prozess – das abwechselnde Reduzieren und Oxidieren des Eisens – entsteht ein geschlossenes System, das zur bedarfsgerechten Ein- und Ausspeicherung genutz werden kann. Da diese Reaktionen bei erhöhten Temperaturen (300–900 °C) stattfinden, ist eine effiziente Wärmerückgewinnung von zentraler Bedeutung. Eine gezielte Rückgewinnung und Integration von Prozesswärme kann Verluste reduzieren und verschiedene Abwärmequellen nutzen, wodurch sich sowohl energetische als auch ökonomische Vorteile ergeben.

Aufgabenstellung

Im Rahmen dieser Abschlussarbeit sollen thermodynamische Modelle zur Bewertung und Optimierung alternativer Wärmeintegrationskonzepte für die eisenbasierte Ein- und Ausspeicherung von Wasserstoff entwickelt werden. Dabei sind verschiedene Betriebsbedingungen und potentielle Abwärmeverfügbarkeiten zu berücksichtigen. Sowohl Reduktions- als auch Oxidationskonzepte sind individuell zu betrachten, ebenso wie Konzepte, die einen alternierenden Betrieb ermöglichen. Die Prozessmodellierung soll in Python erfolgen. Die Arbeitsschritte umfassen:

- Konzeptentwicklung: Entwicklung von alternativen Konzepten zur Wärmeintegration.
- Modellbildung: Entwicklung thermodynamischer Modelle (Massen- und Energiebilanzen) für verschiedene Betriebsbedingungen sowie die Durchführung von Pinch-Analysen.
- Dimensionierung und ökonomische Bewertung: Vorauswahl vielversprechender Konzepte; Dimensionierung und Einbindung von Kostenfunktionen; Bewertung und Ausarbeitung von Empfehlungen.

Schematische Darstellung einer Pinch-Analyse

Voraussetzungen

- · Interesse an der Modellierung thermischer Energiesysteme
- · Grundlagenkenntnisse in Thermodynamik und Wärmeübertragung.
- Erfahrung im Umgang mit Python oder die Bereitschaft, sich diese anzueignen.
- · Selbstständige, strukturierte Arbeitsweise.

Kontakt

Jannik Neumann, M.Sc. L2|06, Raum 210 neumann@ttd.tu-darmstadt.de

Termin

Ab sofort